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A circular shape placed on an incline will roll; similarly, an

irregularly shaped object, such as the Archimedean spiral,

will roll on a flat surface when a force is applied to its

axle. This rolling is dependent on the specific shape and

the applied force (magnitude and location). In this paper,

we derive formulas that define the behavior of irregular 2D

and 3D shapes on a flat plane when a weight is applied to

the shape’s axle. These kinetic shape (KS) formulas also

define and predict shapes that exert given ground reaction

forces when a known weight is applied at the axle rotation

point. Three 2D KS design examples are physically verified

statically with good correlation to predicted values. Motion

simulations of unrestrained 2D KS yielded expected results

in shape dynamics and self-stabilization. We also put forth

practical application ideas and research for 2D and 3D KS

such as in robotics and gait rehabilitation.

Nomenclature

Two-dimensional Shape

θ Angle around shape axle

R(θ) Shape radius

ψ(θ) Angle relating shape tangent to vector and applied

weight to radial force

Fv(θ) Weight applied at axle perpendicular to ground

Fr(θ) Radial ground reaction force parallel to ground

L(θ) Horizontal distance between applied weight vector

to ground contact point

H(θ) Vertical distance between shape axle and ground

Three-dimensional Shape

θ, φ Elevation and azimuth angle around shape axle

Rr(θ,φ) Shape radius in the radial plane

Rt(θ,φ) Shape radius in the tangential plane

Fv(θ,φ) Weight applied orthogonal to ground

Fr(θ,φ) Radial ground reaction force (RGRF) of shape

parallel to ground

Ft(θ,φ) Tangential ground reaction force (TGRF) of shape

parallel to ground

1 Introduction

It is easily demonstrated that a perfectly circular shape

does not roll on a flat surface, but only rolls when placed

onto a decline. By straightforward dynamic analysis of a

circular shape, it is obvious that when placed on a decline

the sum of moments does not equal zero, hence the shape

will roll. It can also be demonstrated that a smooth two-

dimensional polar shape with a non-constant radius will roll

on a flat surface around the instantaneous point of contact. It

will roll toward the decreasing radius with respect to angle

when a vertical force is applied to its axle. Both of these

situations create the same instantaneous dynamic rolling

effect, illustrated in Fig. 1.

The rolling of a circular wheel is definitely not novel,

but the rolling of an irregularly curved shape, such as a

spiral rolling on a flat surface, is useful and has not received

much research attention. In this paper, we show how to

derive two- and three-dimensional shapes that, when placed

on a flat plane and loaded with a known weight at the

axle point, will produce a desired ground reaction force

parallel to the flat plane. This derived shape with known

force parameters can in turn be used in static and dynamic

applications some of which include, but are not limited to,

self-stabilization, material hardness testing, robotic control,

and gait manipulation.

This paper defines and validates applications of two-

and three-dimensional shapes that have a predictable kinetic

and kinematic profile across their perimeter surface. Due to

their predictive kinetic parameter, we will call these shapes

kinetic shapes (KS).

2 Background

Two centuries B.C., astronomer and mathematician

Conon of Samos was the first to study conic sections,

which are curves created by the intersections of cones. His

work greatly inspired a colleague, Archimedes, to further

study a special two dimensional curve now known as the

Archimedean spiral (AS) [1]. The AS is given by Eqn. (1),

R(θ) = a+bθ, (1)

where a and b are arbitrary spiral constants. While there are

many variations of such a curve (e.g., Logarithmic Spiral,

Cortes Spiral, etc.), the AS is defined in polar coordinates

as a curve that increases at a steady rate in radius as the

angle increases. This shape is particularly interesting in its

Fig. 1. A circular wheel on a decline and a shape with a negatively

changing radius are instantaneously equivalent in rolling dynamics.



physical form, in that it rolls by itself on a flat surface and

closely mimics a circular wheel rolling down a hill. While

the physical form of the AS is applicable in many disciplines,

such as fluid compression [2] or microbiology [3], it is found

to be attractive to mechanical designs where passive rolling

or force redirection is desired.

Such a design is the Gait Enhancing Mobile Shoe

(GEMS) [4, 5] for gait rehabilitation of individuals with

neurological disorders such as stroke. The GEMS mimics

a split-belt treadmill (a treadmill with two independently

controlled treads) by pushing the individual’s foot backward

as they step onto the shoe with AS-shaped wheels. As the

user applies their weight onto the spiral wheels, the wheels

react by rolling horizontally. This method is completely

passive in that it does not utilize any energized motors or

actuators, but only uses the person’s weight to create motion.

Unlike a split-belt treadmill, the GEMS is portable and can

apply rehabilitative motions for a longer amount of time.

This two dimensional rolling motion is essentially created

by the changing of the radius in a rounded shape.

Similarly, a deformable crawling and jumping soft

robot [6] can use this rolling principle where the initial

circular shape is mechanically deformed, which causes it

to roll on a flat surface and it can even roll up a slope.

This circular robot progresses forward by shortening and

lengthening internal chords that are attached to an outside

rim. As the rim is systematically deformed by the chords,

the robot rolls forward or backward. This crawling robot

used the same principle to construct a sphere that can roll [6].

This study of a crawling and jumping deformable soft robot

only addresses the hardware, software, and motion energy

analysis, but is missing an explanation of the rolling kinetics

and an analytical description of the motion.

A static version of a spiral shape is used in rock

climbing equipment. The safety equipment known as a

spring-loaded camming device (SLCD) [7] is commonly

used by rock climbers to secure their rope into a rock crack

while climbing. The SLCD utilizes two freely spinning

spiral-shaped cams facing opposite directions. When the

climber falls and applies a sudden force between the spiral

cams and the rock surface, the cams are pushed outwards

increasing friction between the cams and rock surface and

providing enough force to resist the falling climber. This

static force redirection is similar, but opposite, to the

previously described GEMS and rolling robot in that it

directs horizontally applied force into a perpendicular force.

While this climbing innovation has been on the market

for decades, the authors are not aware of any significant

analysis/research that has been published regarding the

variation of forces along the cam perimeter and optimization

of its logarithmic spiral shape.

Spiral-shaped wheels have a resemblance to objects with

an eccentric rotation point, such as cams [8, 9]. Research on

cam design focuses on the transfer of kinematics of two or

more entities, generally rotary motion (the cam) into linear

motion (the follower). While research on camming generally

focuses on kinematics and tribology, it does not have free or

forced rolling dynamics or force redirection of continuous

irregular shapes.

The study of belt drives [10] and gearing [11] generally

focuses on torque, rotational velocities, and normal forces

between gear tooth surfaces. This includes the kinematics

of circular and non-circular (elliptical) belt pulleys [12] and

gears [13], and the kinematics of rack and pinion type of

mechanisms [14]. Again, little is found in this area for free

rolling and force redirection of irregular shapes. One related

study derived a square wheel with matching roads (a type of

rack and pinion) [15] that showed some insight into irregular

shape rolling kinematics, but kinetics and static equilibrium

of these shapes are not addressed.

One study considered the geometry of 2D circular, non-

circular, and logarithmic shape rolling [16]. However, it did

not consider any kinetics and strictly focused on the traces of

curves (roulettes) created when rolling over various surfaces.

Spiral patterns are also possible in 3D, such as a rhumb

line (loxodrome). We include helix type spirals in our

definition of 3D spirals, which have no change in radius,

only in the depth dimension. No literature could be found

that defines the kinetic or kinematic behavior of such shapes

(or curves) during free or forced rolling dynamics. However,

such research is needed for gait correction and rehabilitation.

Roll over shapes (ROS) are foot rocker shapes that the

foot rolls over when completing the stance phase during the

gait cycle. ROS have enormous effects in gait kinematics,

kinetics, and balance [17], and ROS are important in

prosthetic design [18, 19, 20]. However, current gait studies

have not been able to analytically predict the behavior of

ROS. Hanson et al. [20] state ”A better understanding

[of ROS] could be used to develop improved prostheses,

perhaps improving balance and balance confidence, and

reducing the occurrence of falling in lower limb prosthesis

users”. A significant issue in lower limb prosthetic designs

are the forces exerted by the prosthetic onto the user’s stump.

These forces can be manipulated or even diminished if the

ROS is modified properly [21]. Besides prosthetic design,

orthotic therapy and gait rehabilitation using specially-

designed shoe soles can benefit patients of diseases such

as cerebral palsy, parkinson’s, and stroke [22], and increase

muscle activity of selected foot muscles [23].

ROS also play a crucial role in the design of passive

dynamic walkers (PDW), which can be used to predict

normal and pathological human gait [24]. A PDW (2D or

3D) mimics human gait by walking down an incline solely

due to gravity, hence they are completely passive. Through

design trials, McGeer indicates a most effective foot rocker

radius to be 1/3 of total leg length [25], exactly matching

the most efficient human ROS radius [26]. Although PDW

ROS are a key component to the dynamics and stability of

PDWs, currently the authors are not aware of any literature

that specifically specifies the size or shape of PDW ROS.

3 Two-Dimensional Kinetic Shape

In this section we derive, validate, and present design

examples of two-dimensional kinetic shapes.



3.1 Mathematical Model Derivation

A curved and continuous arbitrarily 2D shape that is

pressed onto a flat plane at its axle point tends to rotate

towards the decreasing radius. This rotation is because the

applied weight is not vertically in line with the point of

ground contact, which creates unmatched moment couples

with the radial ground reaction force (RGRF). Hence, the

shape is not in static equilibrium and will roll.

However, if the rolling motion of this shape is restrained

by a horizontal force at the axle point so that the shape is

in static equilibrium, the sum of all forces and moments

must equal zero (Fig. 2(a)). For this to happen, the moment

couple created by the RGRF (friction) and the equal and

opposite restraining force has to be equal to the moment

couple created by the applied weight and the equal and

opposite vertical ground reaction force. Because the shape

varies in radius, the RGRF component pushing away from

the axis, Fr(θ), must vary as well.

It is assumed that the friction force between the ground

and the shape is large enough for the shape not to slip. It

is also assumed that there is no deformation of the shape or

ground. This analysis is also only valid when the applied

force at the shape axle is much greater than the combined

gravitational forces applied at the center of mass of the shape

or if the center of mass coincides with the shape axle.

We will derive a general formulation to create a shape

that will generate a desired RGRF given a known applied

weight. We begin by adding the two moment couples acting

on a general 2D shape under static equilibrium

∑Mz = Fv (θ)L(θ)−Fr (θ)H (θ) = 0 (2)

where L(θ) and H(θ) are shown in Fig. 2(a), and defined as

H(θ) = R(θ)sin(ψ(θ)), (3)

L(θ) = R(θ)cos(ψ(θ)), (4)

and ψ(θ) is defined in Fig. 2(a). Substitution of Eqn. (3)

and (4) into the statics equilibrium Eqn. (2) yields

Fv(θ)[R(θ)cos(ϕ(θ))] = Fr(θ)[R(θ)sin(ϕ(θ))]. (5)

Dividing out R(θ) and applying appropriate trigonometric

identities results in

ψ(θ) = tan−1

✓

Fv(θ)

Fr(θ)

◆

. (6)

Eqn. (6) defines the angle ψ(θ) along the perimeter of the

shape. ψ(θ) relates the weight applied at the shape axle and

the RGRF at ground contact.

ψ(θ) can also be defined as the angle at the point of

ground contact between the ground vector (shape tangent),

dR/dθ, and the radial vector (axle to ground contact point),

R(θ), as shown in Fig. 2(b) [27]. This relation is defined as

ψ(θ) = tan−1

✓

R(θ)

dR/dθ

◆

. (7)

It is now apparent that we can equate and reorder Eqns. (6)

and (7) to form a first order ordinary differential equation.

Fig. 2. (a) Static equilibrium of a kinetic shape. (b) Kinetic shape

geometric parameters.

dR

dθ
=

R(θ)Fr(θ)

Fv(θ)
(8)

Eqn. (8) can be solved using the method of separation of

variables by first rearranging,
✓

1

R(θ)

◆

dR =

✓

Fr(θ)

Fv(θ)

◆

dθ , (9)

then integrating both sides of the equation to solve for the

shape radius.

R(θ) = exp

Z
Fr(θ)

Fv(θ)
dθ+Constant

�

(10)

The integration constant is dependent on the initial radius of

the shape. Eqn. (10) will derive a 2D kinetic shape (KS) that

produces a RGRF, Fr(θ), when a load perpendicular to the

ground at axle point, Fv(θ), is applied. Section 3.3 shows

how Eqn. (10) is used to design a shape and experimentally

validates several force profiles.

The derived shape can be checked to determine if it

produces the desired reaction forces when loaded by taking

the obtained shape R(θ) and finding ψ(θ) in Eqn. (7), then

inputting it back into Eqn. (6). The resulting forces should

match the initial input forces. This also enables one to find

the kinetic profile of any irregular curved 2D shape.

The 2D KS equation, Eqn. (10), yields a unitless radius

value. This indicates that it only depends on the force ratio

rather than the size of the shape. Thus, when loaded with a

fixed weight, the same KS with different scaling factors will

produce the same RGRF. For example, a KS for a constant

800 N weight and constant 200 N RGRF input will be the

exact same as a KS for a constant 4 mN vertical and constant

1 mN RGRF input regardless of its scaled dimensions.

3.2 Physical Verification Experiment

The kinetic shape can be verified with the simple setup

shown in Fig. 3. The weight is applied to the shape axle

and the reaction forces exerted by the shape axle are both

measured with a load cell sensor (Omega LC703) placed in

line with the forces. To prevent the KS from slipping, two-

sided course grade sandpaper was placed at ground contact.

As the applied weight was gradually loaded, the RGRF

increased as well.

The tested KS were loaded at π/6 rads intervals from

zero to 2π rads. Some perimeter points, such as the lowest



Fig. 3. Schematic of test structure for 2D kinetic shapes

radii on a spiral shape, were omitted because the ground

contact could not reach that particular perimeter point (i.e.,

Fig. 4(a) at 0 rads), however this usually was only one point.

The reaction load for each perimeter point was recorded

with a mass of 7.9 kg to 18.0 kg at four even intervals applied

to the shape axle. The mean and standard deviation for each

point was calculated in terms of percent force transfer (100∗

Fr(θ)/Fr(θ)), which was then multiplied by 800N.

Three 2D KS examples were chosen for verification and

were laser cut from tough 0.25 in (0.64 cm) thick Acetal

Resin (Delrin R�) plastic. The laser cutter used to cut test

shapes was a 60 Watt Universal Laser System R� VLS4.60.

3.3 Model Result Design Examples

To demonstrate example KS designs using Eqn. (10),

three different desired force functions with constant applied

weight were chosen: constant, sinusoidal with an offset,

and Fourier series expanded non-smooth RGRF function.

Each derived KS assumed a constant vertical force of 800 N.

The magnitude of these force functions were chosen for the

convenience of experimentation. Although the analysis can

be expanded to KS that revolve more than once, we focus

on shapes that range from zero to 2π rads. It is important

to note that if the 2D shape is to be continuous around one

revolution, Eqn. (11) must be satisfied.

Z 2π

0
Fr (θ)dθ = 0 (11)

3.3.1 2D Shape 1: Constant RGRF

To introduce the KS design concept, we start with a

shape defined by a constant force function and a constant

applied weight function. Eqns. (12) and (13) describe the

input functions used to derive the first 2D KS. The KS was

started with an initial shape radius of 2.5 in (6.35 cm) and

ends with a 5.46 in (13.86 cm) radius.

Fv(θ) = 800N (12)

Fr(θ) = 100N (13)

With these forces and initial radius, Eqn. (10) becomes

R(θ) = exp



100

800
θ+ ln(2.5)

�θ=2π

θ=0

. (14)

As an 800 N force is applied at the shape axle, the

shape will react with a 100 N force regardless of the

rotation angle. As seen in Fig. 4(a), the gradual and

slight exponential increase in shape radius, dR/dθ, statically

produces a constant force at any perimeter point around the

shape, creating a spiral KS. Note that the units, and thus the

scaled size, are irrelevant and this KS would behave the same

if scaled up or down.

As seen in Fig. 4(a), the physical measurements are in

good agreement with theoretical values. There are some

variations; however, these can be accounted for by shape

surface and test setup imperfections. Although the force

profile standard deviation is not always within predicted

theoretical range, the trend is relatively constant.

3.3.2 2D Shape 2: Sinusoidal RGRF

A KS can also be derived using a more complicated

sinusoidal force function with a constant offset. Eqns. (15)

and (16) describe the input functions that define this 2D KS.

Fv (θ) = 800N (15)

Fr (θ) = 100 sin(θ)+100N (16)

With these forces, Eqn. (10) then becomes

R(θ) = exp



1

8
(θ− cos(θ))+ ln(1.75)

�θ=2π

θ=0

. (17)

Unlike in the previous example that produces a constant

RGRF, this shape creates a varying sinusoidal force

throughout the rotation. In this example design it is clear

that the reaction force is dependent on dR/dθ of the shape.

As the sinusoidal force reaches a maximum at π/2, dR/dθ
is steepest and produces the highest RGRF. Likewise, as the

input force reaches a minimum of zero at 3π/2, dR/dθ is

zero as well. At 3π/2 the KS instantaneously behaves as a

circular wheel would, and, like a circular wheel, it does not

produce a RGRF when vertically loaded at its axle.

The KS assumes a spiral shape with a starting radius of

1.75 in (4.44 cm) and a final radius of 3.82 in (9.70 cm). The

shape again resembles a spiral due to the fact that the sum of

force around the shape perimeter is non-zero as defined by

Eqn. (11). The physically measured force profile for this 2D

KS, shown in Fig. 4(b), was slightly higher than predicted,

however the sinusoidal trend was in good agreement.

3.3.3 2D Shape 3: Fourier Expanded Piecewise Force

It is clear now that a KS can be designed with any input

force function. We expand our analysis to a piecewise force

function that has been expanded using ten Fourier series

terms to demonstrate that nearly any force profile can be

created. This piecewise force function is defined as

Fv (θ) = 800N (18)

Fr (θ) =

8

<

:

200N, 0 ≤ θ ≤ 3.8
4380−1100θN, 3.8 < θ < 4.3

−350N, 4.3 ≤ θ < 2π
(19)

Note that this time the RGRF function crosses zero at

4.1 rads (Fig. 4(c)). At exactly this point, the shape produces

no force and the radius starts to decrease in order to produce

a negative force. This shape does not form a spiral, but is



Fig. 4. (a) 2D Shape 1 forms a spiral with a steadily increasing radius as it is defined by a constant vertical force input and a constant RGRF

output all around the shape. (b) 2D Shape 2 forms a monotonically increasing radius spiral, however when a constant weight is applied, it

reacts with a sinusoidal RGRF around its perimeter. (c) 2D Shape 3 forms a continuous shape because, when a constant weight input is

applied, it initially reacts with a positive reaction force and then switches directions to form a negative RGRF. All physical measurements are

in good agreement.

continuous around its perimeter, starting and ending at the

same radius, hence Eqn. (11) is satisfied.

Measurements on the physical shape verified the

predicted values. As seen in Fig. 4(b), physical data falls well

within theoretical values. Note that the standard deviation of

measurements increases where the force profile fluctuates the

most.

3.4 Shape Dynamics

A restrained 2D KS is able to statically produce desired

reaction forces; however we can utilize an unrestrained

kinetic shape to exert a known force around its perimeter

over time in a dynamic setting. In other words, a KS can be

obtained to exert a predicted dynamic force onto an object or

itself creating a predicted dynamic response.

One application of a kinetic shape in a dynamic setting

is to displace a flat plate on the ground. We assume a no-

slip condition between the KS and the flat plate, and no

friction between the flat plate and ground. Also, the shape

axle is constrained to only move along the vertical direction

as shown in Fig. 5.

As a vertical force is applied to the KS, RGRF push

the flat plate in the horizontal direction, thus changing

its velocity. To illustrate this concept, we simulated the

Fig. 5. A flat plate with a known mass is dispensed with a predicted

linear acceleration.

sinusoidal KS that weighs 0.01 kg (0.1 N) (Fig. 4(b)) being

pushed vertically at its axle with 8.0 N force onto a flat plate

weighing 0.5 kg (4.9 N). The shape mass with respect to

the dispensed plate is considered negligible. All dynamic

behavior was analyzed with SolidWorks Motion Analysis R�.

Fig. 6 shows the plate velocity and shape rotation

position versus time. The magnitude of the applied vertical

force only affects the simulation time. Because the shape was

not continuous all around, setup dynamics were recorded

from 2π to 1.7 rads, rolling from the greatest radius at 2π
to the lowest radius.

Referring back to Fig. 4(b), this velocity profile

perfectly shows the effect of changing the sinusoidal output



Fig. 6. Dynamic interaction of 2D Shape 2 onto a flat plate (0.5 kg).

The applied weight is constant as the kinetic shape pushes the plate.

force around the shape. Adhering to the basic principle

dynamic of Newton’s second law, as the RGRF decreases to

zero, so does the acceleration of the moving plate, creating

a plateau in plate velocity at 3π/2. Thereafter, the pushing

force increases dramatically and so does the plate velocity.

Although this simulation setup and results are insightful

of pushed plate dynamics, it can be relatively viewed as

regular over-ground rolling of the KS, where the shape

moves over a stationary surface. However, in over-

ground shape rolling, the changing moment of inertia about

ground contact factors into the rolling dynamics, which can

obfuscate this example. If the weight applied at shape axle is

much larger then the weight of the shape itself, shape inertial

forces can be neglected. We leave this to future work.

3.5 Mechanical Self-Stabilization

Dynamic self-stabilization is an interesting mechanical

aspect of an unrestrained KS. A system that is able to self-

stabilize will correct its state to a stable value when perturbed

by an external force or when started at any other state. When

an unrestrained and rolling KS RGRF profile switches signs,

crossing the zero axis, it creates a stable point. Once loaded,

the shape will roll around its perimeter, eventually settling

onto this zero stable point due to non-conservative damping

forces such as friction.

This behavior can be observed in Fig. 7, where the

KS RGRF is described by a simple sinusoid switching

force sign at 0 and π rads. In a virtual simulation with

SolidWorks Motion Analysis R�, this shape is pushed down

with a constant weight (50 N) that is significantly larger then

Fig. 7. When disturbed or placed at an unstable position, a two-

dimensional kinetic shape settles at its equilibrium point.

Ft

FVFV

Fr Fr

Fig. 8. While a cylinder only produces a RGRF force to keep it from

slipping, a helix curve produces an additional TGRF for sideways

rolling, as illustrated in this figure.

the shape weight (0.1 kg; 1 N) starting at 3π/2 rads after

which it oscillates and comes to a halt at π rads. While

the behavior is consistent, the settling time, of course, is

dependent on the applied weight, shape mass (and/or plate

mass), and non-conservative forces. It is stressed that shape

inertia becomes negligible if the applied weight is much

larger then the shape weight. This concept can be utilized

in any mechanical structure where the stable position of the

structure is important after disruptive forces are applied.

4 Three-Dimensional Kinetic Shape

We expand our analysis into the third dimension by

deriving and analyzing a 3D KS. The behavior of a 3D KS

can sometimes become hard to visualize. While a 2D KS

produces only one RGRF that pushes radially away from the

shape’s axle, a 3D KS can theoretically produce two force

components: the same RGRF pushing away from the axle

point and a tangential ground reaction force (TGRF) pushing

around the vector of weight application that is orthogonal to

the ground plane.

To visualize the TGRF, imagine a cylinder sitting on a

flat plane (e.g., a cup on a table) as shown in Fig. 8. If the

cylinder is tipped over, the ground experiences only a RGRF

to keep it from slipping. However, if the cylinder’s sides are

not uniform in length around its perimeter, such as in a helix

curve, the tipped helix will tend to push and roll around the

vertical axis which runs through the center of mass and is

perpendicular to ground. This rolling motion is caused by

the TGRF acting on the cylinder’s rim. This TGRF can also

be generated if a 2D KS is wrapped around a vertical axis

with a non-constant radius.

4.1 Mathematical Model Derivation

We seek to derive a set of equations that allows us to

construct a shape that produces a known RGRF and TGRF

when vertically loaded. Similar methods and assumptions

utilized to derive a 2D KS are used to produce an analytical

model of a 3D KS.

We begin by examining a 3D shape/curve in static

equilibrium, shown in Fig. 9. The summation of all moment

couples in the radial plane and about the vertical vector

yields the following equations:

∑Mr = Fv(θ,φ)R(θ,φ)cos(ψ) ... (20)

−Fr(θ,φ)R(θ,φ)sin(ψ) = 0

∑Mv = [Ft(θ,φ)cos(φ)] (R(θ,φ)cos(ψ)cos(φ)) ... (21)

−[Fr(θ,φ)cos(φ)] (R(θ,φ)cos(ψ)sin(φ)) = 0 .



These kinetic equilibrium equations are simplified, rear-

ranged and related to the geometric parameters shown in

Fig. 10, following a similar derivation as shown in Sec. 3.1.

tan(ψ) =
Fr(θ,φ)

Fv(θ,φ)
=

R(θ,φ)

dR/dθ
(22)

tan(φ) =
Ft(θ,φ)

Fr(θ,φ)
=

dR/dφ

R(θ,φ)
(23)

Angle ψ again relates forces in the radial plane while

also relating the radial vector to the ground plane. Angle

φ relates the TGRF to the RGRF while also relating the

geometric parameters shown in Fig. 10.

After rearranging terms, we are left with two first order

ordinary differential equations.

✓

1

R(θ,φ)

◆

dR =

✓

Fr(θ,φ)

Fvθ,φ)

◆

dθ (24)
✓

1

R(θ,φ)

◆

dR =

✓

Ft(θ,φ)

Frθ,φ)

◆

dφ (25)

By the method of separation of variables, R(θ,φ) yields

Rr(θ,φ) = exp

Z
Fr(θ,φ)

Fv(θ,φ)
dθ+Constant

�

(26)

Rt(θ,φ) = exp

Z
Ft(θ,φ)

Fr(θ,φ)
dφ+Constant

�

(27)

Eqns. (26) and (27) jointly describe a 3D KS that relates

an applied weight, RGRF, and TGRF. These radius equations

describe the shape in the radial and tangential direction,

respectively. As before, a radial force is produced by

the change in radius with elevation angle, while TGRF is

produced by a change in azimuth angle.

In the absence of a TGRF, Eqn. (26) is Eqn. (10), and

in the absence of a TGRF forms the same 2D shape. This

is made clear when examining Eqn. (27), where as the force

ratio diminishes, the radius does not change in the tangential

direction. Also, as the force ratio increases, the shape

increases exponentially in the tangential direction radius.

Fig. 9. Free body force diagram of a 3D kinetic shape

Fig. 10. Geometric parameters at 3D shape ground contact

4.2 Model Result Example

To illustrate the 3D KS represented by Eqns. (26)

and (27), we derive a shape, which when loaded with a

known weight will produce a specified radial and TGRF. The

following force functions define this KS.

Fv(θ,φ) = 800N (28)

Fr(θ,φ) = 60θN (29)

Ft(θ,φ) = 100sin(φ)+200N (30)

The KS force function along with the integration path (i.e.,

shape rotation path) in the radial and tangential direction are

shown in Fig. 11(a), while the derived shape along with the

surface and curve rendering is displayed in Fig. 11(b).

Single and subsequent integration paths can form a KS

curve and surface, respectively, however a KS surface often

cannot statically or dynamically behave as predicted when

weight is applied at the axle point due to the interaction

between integration paths. Invalid surfaces arise when

integration paths that form the surface are not continuously

accessible to the ground plane. In many cases, kinetically

defined surfaces can be found in which all integration paths

are possible, enabling the surface to exert force onto a ground

plane.

While we do not present the physical verification of this

3D KS, static analysis of this shape could be done using

a force plate, similar to what was done in the 2D case.

Dynamic analysis could be done by placing the 3D shape on

a simultaneously rotating and radially extending disc surface.

5 Design Applications and Ideas

2D and 3D static and dynamic KS can be utilized in

many mechanical methods and designs. In this section a few

applications are analyzed and discussed.

5.1 Load Testing Equipment

The static application of a 2D KS can be desirable

in surface hardness/properties testing. Consider a surface

microindentation hardness testing device/method such as

Rockwell, Brinell, or Vickers hardness test. A 2D KS can

be derived such that the examiner utilizes only one applied

weight while only having to rotate the kinetic shape in

order to get a variable load applied onto the surface micro

indentation device.

5.2 Variable Dynamic Output for Mobile Robotics

It was shown that a 2D KS can be derived that creates a

predictable linear kinematics profile of a pushed plate. This

concept can be useful in the realm of mobile robotics, where

the velocity profile of robot linkages or any robot movement

is crucial. This method offers a mechanical alternative

to electronic robot dynamics manipulation and trajectory

control. While the 2D KS can produce a predictable kinetic

and kinematic linear movement, a 3D KS can be used to

produce expected rotary motion.



Fig. 11. (a) Radial and tangential ground reaction force definition of 3D KS. (b) Derived 3D surface and 3D curve KS, where the curve is

the surface center.

5.3 Gait Correction and Prosthetics Shoe Soles

5.3.1 Shoe Sole Design

Shoe sole design impacts ground reaction force

magnitude and direction during walking. These ground

reaction forces can affect lower limb joints and muscles

and/or the spine. A 3D KS can be derived that utilizes gait

forces to mechanically filter and redirect these forces in order

to change foot pressure distribution or foot orientation to

alleviate walking problems.

Foot prosthesis design can greatly benefit from a 2D or

3D KS in order to predict foot roll over shape (ROS) kinetics

during walking. Better ROS can result in more symmetric

gait and less frictional forces at the stump.

Fig. 12. A kinetic shape derived to react with a constant 100 N radial

force when non-constant walking weight is applied.

5.3.2 GEMS Optimization Example

The Gait Enhancing Mobile Shoe (GEMS) [4, 5] is

a novel device developed for lower limb rehabilitation,

specifically asymmetric gait. The GEMS mimics a split-

belt treadmill, which imposes different velocities on each

tread, that is used in gait rehabilitation. However, the GEMS

does not use any actuators or motors, but relies on passive

spiral shaped wheels where the user’s weight is transferred

into a backward motion. The GEMS regulates the generated

horizontal force from the spiral wheels using dampers and

springs to create a safe overground velocity.

Human gait is divided into two phases: stance and

swing. The stance phase consists of initial heel strike,

mid-stance, and toe-off. During all three sub-phases the

radial ground reaction forces vary from resistive forces at

heel strike to assistive forces at toe-off, switching at mid-

stance. Treadmills generate a constant backward velocity

and the GEMS was initially designed to create a similar

profile. However, the GEMS also affords the optimization

of the velocity profile that includes non-constant velocities

and force profiles. The KS wheel can be designed using the

known applied weight during the stance phase so that the

resulting horizontal force is any arbitrary profile desired.

Using actual kinetic gait data which was obtained by a

person walking over a force plate multiple times, we derived

a KS to produce a constant horizontal (radial) backward

force of 100 N. The applied weight and horizontal (radial)

reaction force trends were simulated as shown in Fig. 12.

The simulated force definition used to derive the KS was

Fv(θ) = 120 sin(1.5θ)+550N (31)

Fr(θ) = (−71θ+228)+100N (32)

To mimic actual data, the applied weight and desired

horizontal force functions were windowed with a tapered

Tukey window at a taper ratio of 0.4. The derived shape is

shown in Fig. 12 with an initial radius of 2.78 in (7.00 cm).

The resulting GEMS wheel shape will theoretically produce

a constant backward force of 100 N. Given the derived

wheel shape, the generated radial force is only dependent



on the applied weight. Therefore, it is irrelevant how many

wheels the GEMS has since the applied weight is distributed

through the number of wheels, hence producing a cumulative

backwards force of 100 N.

6 Conclusion

We derived 2D and 3D formulas to produce KS defined

by ground reaction forces when a known weight is applied.

Three 2D shapes were tested statically and results were in

good correlation with predicted values. During physical

verification of 2D KS, it was found that a larger KS and KS

with greater radial change produced more accurate readings.

This can be accounted to surface finish and a more defined

radius change. A dynamic analysis of the 2D shape showed

the viability of using the 2D shape in dynamic applications

such as plate dispensing and self-stabilization. A 3D KS

that produces a radial and tangential force was defined and

rendered, however, no static or dynamic physical verification

was performed. Similar static and dynamic behaviors are

expected in the radial and tangential directions. While

much of current KS is presented in this paper, much is left

to exploration and application of KS such as the physical

verification of 3D KS, formal definition of dynamic KS

behavior, and development of the proposed applications.
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